
UNCLASSIFIED

UNCLASSIFIED

Optimising the Parallelisation of OpenFOAM
Simulations

Shannon Keough

Maritime Division

Defence Science and Technology Organisation

DSTO-TR-2987

ABSTRACT

The OpenFOAM computational fluid dynamics toolbox allows parallel computation of fluid
dynamics simulations on a theoretically unlimited number of processor cores. The software
utilises a message passing interface (MPI) library in order to facilitate communication between
parallel processes as the computation is completed. In order to maximise the parallel
efficiency of the computation, the way in which the MPI application distributes the problem
among the processors needs to be optimised. This report examines the performance of a given
high performance computing cluster with several OpenFOAM cases, running using a
combination of MPI libraries and corresponding MPI flags. The effect of hardware variations
on the speed of the computation is also briefly investigated. The results show a noticeable
improvement in simulation time when certain flags are given to the MPI library in order to
control the binding and distribution of processes amongst the cluster.

Approved for public release

RELEASE LIMITATION

UNCLASSIFIED

UNCLASSIFIED

Published by

Maritime Division
DSTO Defence Science and Technology Organisation
506 Lorimer St
Fishermans Bend, Victoria 3207 Australia

Telephone: 1300 333 362
Fax: (03) 9626 7999

© Commonwealth of Australia 2014
AR-015-993
June 2014

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

Optimising the Parallelisation of OpenFOAM
Simulations

Executive Summary

Computation Fluid Dynamics (CFD) is used to simulate fluid flow in order to solve
engineering problems for a variety of applications. The Electromagnetic Signature
Management and Acoustics group (EMSMA) has recently begun using the
OpenFOAM CFD toolbox in order to study various flow problems. The software is run
on a high performance computing (HPC) cluster built from a series of workstations
containing Intel Xeon processors, networked together to run computations
simultaneously. Due to the computationally intensive nature of CFD calculations, even
a large cluster can take significant periods of time to produce a solution. As such, even
small percentage improvements in the performance efficiency of the system can result
in savings of days or weeks in the computational time required to produce solutions
for the problem being investigated.

In order to run a large problem across many different processors simultaneously, each
case is divided into a number of smaller pieces each of which is handled by a single
processor core. These pieces are distributed and assigned to each of the cores in the
cluster by the software’s message passing interface (MPI) library, which also handles
the communication required between processes in order to assure consistent results
across the case domain.

Multiple combinations of software utilisations are investigated in this report, including
the comparison between Intel proprietary compilers and MPI library, with their open
source equivalents. The various options provided in the MPI libraries for process
distribution are investigated, as well as the effect of these options on different size and
types of fluid dynamics problems.

The results show that for the HPC cluster used by the EMSMA group, the best
performance is achieved by using an open source compiler and MPI library and
running jobs using the “bind-to-core” and “bysocket” MPI flags. It was also seen that
the case decomposition method could be tailored to the specific case in order to
provide additional performance and that the size of the case was particularly relevant
to the maximum number of parallel processes that could be run before no further
performance gains would be achieved from the addition of further hardware.

This information will be used to ensure that all CFD simulations run on this hardware
are optimised for maximum computational output and efficiency.

UNCLASSIFIED

UNCLASSIFIED

Computational Fluid Dynamics (CFD) is used to simulate fluid flow in order to solve a
range of engineering problems. The Electromagnetic Signature Management and
Anechoics (EMSMA) group has been using the OpenFOAM CFD toolbox with a high
performance computing (HPC) cluster in order to solve fluid dynamics problems for
signature management applications. Theoretically, OpenFOAM can be run in parallel
on an infinite number of computer processors; however, due to the nature of CFD
calculations, various bottlenecks exist that limit the scalability of parallel computations.
There are many factors that contribute to the computational performance of the system
including the specifications of the hardware, as well as the configuration of the
software. In order to solve a CFD problem using parallel computation, the domain of
the problem is split into a number of sub-domains equal to the number of parallel
processes to be run on the available hardware. In order to ensure consistent results
across the full domain, communication between processes is facilitated and managed
by the message passing interface (MPI) library. The configuration of the MPI protocol
can have a significant impact on the overall performance.

This report investigates a series of options available for optimising the configuration of
the system including: different hardware specifications and capabilities; direct
comparison between the Intel produced compiler and MPI library with an open source
equivalent; comparison of different case decomposition methods available in
OpenFOAM; as well as a comparison between many optimisation flags available in the
MPI libraries for controlling the binding and distribution of parallel processes amongst
the cluster. Similar benchmarking and optimisation investigations have been
conducted for the SEA supercomputer, however the results of this work were not
available for comparison at the time of writing.

The results show that for the given hardware, the best computational speed is achieved
by using the open source compiler and MPI library, and using MPI flags to specify
binding processes to individual cores and distributing in the “by socket” fashion. It is
also shown that the best decomposition method is highly dependent on the case being
run and that the greatest efficiency is achieved when the number of parallel processes
run is tailored according to the size of the case. It is expected that further parallelisation
efficiency can be achieved through the addition of fast networking equipment (e.g.
Infiniband) to the cluster.

These outcomes will be used to ensure that the EMSMA HPC cluster is optimised
correctly in order to maximise output efficiency for future simulations. The results may
also be useful in optimising parallelisation of OpenFOAM on other HPC hardware.

UNCLASSIFIED

UNCLASSIFIED

Author

Shannon Joel Keough
Maritime Division

Shannon Keough joined DSTO in 2006 as a member of the
Composite and Hybrid Structures group, before moving to the
Electromagnetic Signature Management and Accoustics group at
the beginning of 2013 to work on computational fluid dynamics for
signature management applications. He has a Bachelor of Science
in Nanotechnology (with honours) from Flinders University, a
Master of Business Management from Monash University and is
currently studying a Master of Engineering (Mechanical) at the
University of Melbourne.

____________________ __

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED

Contents

ABBREVIATIONS

1. INTRODUCTION ... 1

2. METHODOLOGY ... 2
2.1 High Performance Cluster ... 2
2.2 Hardware factors ... 2

2.2.1 CPU/RAM speed .. 2
2.2.2 RAM Channels ... 3
2.2.3 Turbo Boost .. 3
2.2.4 Hyper-threading .. 4

2.3 Software Factors .. 4
2.3.1 Process Binding and Distribution ... 4
2.3.2 Case Size and Decomposition .. 6
2.3.3 Proprietary vs Open Source Compilers/Libraries 7

2.4 CFD Test Cases .. 8
2.5 Simulation details ... 9

3. RESULTS AND DISCUSSION .. 9
3.1 Process binding and distribution .. 9

3.1.1 Binding .. 9
3.1.2 Distribution .. 11
3.1.2.1 Single Node .. 11
3.1.2.2 Cluster ... 13

3.2 Case decomposition method ... 15
3.3 Case Size Optimisation .. 17
3.4 Proprietary Compiler and MPI Library .. 20

3.4.1 Intel MPI process binding and distribution 20
3.4.2 Intel vs Open Source Performance .. 24

3.5 RAM speed ... 25
3.6 Turbo Boost .. 27
3.7 Hyper-threading .. 28

4. CONCLUSION .. 30

5. FUTURE WORK .. 30

6. REFERENCES .. 31

APPENDIX A: TABLE OF COMPLETED SIMULATIONS .. 33

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED

Abbreviations

CFD Computational Fluid Dynamics

CPU Central processing unit

EMSMA Electromagnetic signature management and acoustics

GCC GNU compiler collection

HPC High performance computing

ICC Intel C++ Compiler

LAN Local Area Network

MPI Message passing interface

NFS Network File System

OpenFOAM Open source Field Optimisation and Modulation

RAM Random access memory

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
1

1. Introduction

Computational Fluid Dynamics (CFD) is used to simulate fluid flow in many industrial
applications. As the simulations become more complex, the computational power required
increases significantly. In cases where computation time can be measured in days or
months, even small efficiency increases can result in significant computational cost
savings.

The Electromagnetic Signature Management and Acoustics group (EMSMA) has recently
begun using CFD simulations to study various flow problems. The main code used to
perform the simulations is the open source CFD package OpenFOAM (version 2.2.2) [1].
This software is designed to run in parallel and can be configured to run on effectively any
number of cores distributed across any number of networked machines. Ideally, software
capable of running in parallel will divide a job into equal pieces and distribute them to as
many processing units as are available. If each process is able to run independently, then
the speedup gained will be linearly proportional to the increase in computational
hardware. Due to the nature of CFD calculations, OpenFOAM requires a significant
amount of inter-process communication to ensure consistent results across the case
domain. This means that while the software is in theory infinitely parallelisable, every
additional process increases communication overhead, which reduces the speedup below
the linear optimum. Additionally, as the physical size of the hardware is increased,
various system bottlenecks, such as network latency, can prevent the realisation of
performance improvements from the addition of further hardware.

Optimising the system to run efficiently is extremely important and in many cases a
maximum number of parallel processes will be reached at which point no further
performance gains can be achieved through parallelisation. Several factors in both the
hardware and software of the system can influence the performance achieved while
running simulations. In order to determine the effect of these factors on the efficiency of a
CFD simulation, a small High Performance Computing (HPC) cluster was used as the test
platform. By using a cluster, effects due to inter-machine communication, as well as
intra-machine effects, can be examined. Several tests were run to determine the most
efficient methods of running simulations on the hardware available. This report outlines
the results of these tests and details the best system configuration for minimising the run
time of a CFD simulation on the HPC cluster. While many of the results will be specific to
the hardware used in this test platform, other optimisations are expected to be transferable
to other HPC clusters running CFD software. Similar benchmarking and optimisation
studies have been completed as part of the commissioning of the SEA supercomputer
operated by the Hydrodynamics group. At time of writing, the results of this investigation
were not available for comparison.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
2

2. Methodology

2.1 High Performance Cluster

The HPC cluster used in this study consists of eight workstations (nodes) with Intel
Central Processing Units (CPUs), connected by a 1 Gbps Ethernet network. Each node has
the following configuration:

Chassis: HP Z820 with factory liquid cooling
CPU: 2x Intel XEON-E5 2687W – 8 cores per CPU @ 3.1GHz
RAM: 8x 8GB DDR3-1600 Registered ECC memory
Storage: 1TB SATA HDD plus network file system (NFS) server.
OS: CentOS 6.5
CFD Software: OpenFOAM 2.2.2 with OpenMPI 1.5.4 accessed via NFS

The nodes are connected to each other via a local Ethernet switch, which is then connected
via 1 Gbps local area network (LAN) to a separate workstation that acts as the network file
system (NFS) server. The CFD software is located on the NFS server and loaded to RAM
by each node at runtime. The configuration of the NFS server is as follows:

Chassis: HP Z820 with factory liquid cooling
CPU: 2x Intel XEON-E5 2687W – 8 cores per CPU @ 3.1GHz
RAM: 16x 32GB DDR3-1333 Registered ECC memory
Storage: 1TB SATA HDD plus 3x 3TB SATA HDD in RAID0
OS: Red Hat Enterprise Linux 6.5
CFD Software: OpenFOAM 2.2.2 with OpenMPI 1.5.4

2.2 Hardware factors

There are a variety of hardware factors that can affect the efficiency of a CFD calculation.
This report will investigate those listed below.

2.2.1 CPU/RAM speed

Generally, the processing speed of the hardware is the main factor that determines the
speed at which simulations will run. Since all workstations in the HPC cluster are
currently fitted with the same CPU chips (Xeon E5-2687W), the effect of CPU speed is
mostly irrelevant to this investigation. However, not all the workstations are fitted with
the same speed RAM. For pre and post processing of large simulations, large amounts of
RAM are often required. One workstation has been fitted with 32 GB RAM modules in
order to maximise the available amount of memory for processing data. However, the
larger 32 GB RAM modules are limited to a clock speed of 1333 MHz whereas the rest of
the workstations in the cluster are fitted with 8 GB modules that run at 1600 MHz. Since
OpenFOAM is a memory intensive application, it is expected that this variation should
produce a notable difference in performance.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
3

2.2.2 RAM Channels

As well as the speed of the RAM, the number of memory channels between the CPU and
the shared memory can also affect the speed of CFD simulations on the system. The Xeon
E5-2687W CPUs each contain eight cores but only four memory channels. Whenever more
than four cores are active on a single CPU, there will be some sharing of the memory
channels. Since the memory channels have a limited capacity for transferring data, usually
referred to as bandwidth, it is possible for the bandwidth on a given memory channel to
become saturated. In this situation the cores must idle until the data has finished
transferring from the memory. When every core in a node is being utilised, the node
contains 16 active cores sharing only 8 memory channels. Assuming that one core is able to
saturate the memory bandwidth of one memory channel when accessing data stored in
RAM, it could be expected that the performance gains from running a job on eight cores
per CPU would be minimal over running on four cores per CPU. If this is the case, due to
the increased communication overhead of running extra parallel processes, a simulation
running on eight cores per CPU (with four memory channels) might perform worse than
the same job running on four cores on the same CPU. Tests running the same CFD
simulation on different numbers of cores will be used to probe this effect.

2.2.3 Turbo Boost

Modern Intel CPUs, such as those used in the HPC, contain a turbo boost function that is
designed to increase the clock speed of the CPU according to a series of parameters (CPU
load, temperature, etc.) in order to increase performance. Since computational
performance is directly related to CPU speed, increasing the clock speed should have a
noticeable impact on the performance.

Increasing the clock speed of a CPU above the specification (overclocking) is a procedure
that has been utilised by enthusiasts for years in order to improve the performance of
computer systems, generally for gaming applications [2]. However, overclocking can be
difficult to perform successfully, can damage the CPU and voids the manufacturer’s
warranty. Due to these factors, the inbuilt turbo capability of the Intel chips is a preferable
option for maximising performance. Nominally, the Intel turbo function is designed to
operate when only a few cores on a CPU are being utilised and the extra heat produced by
running at higher speeds can be distributed across the cooling mechanism of the entire
chip. In theory, when all of the cores on a chip are running simultaneously, turbo does not
activate and so no increase in clock speed is observed.

This raises an interesting point for investigation when considering the effect of limited
memory channels as mentioned above. If the performance of four cores is similar to that of
eight cores on a single CPU (due to memory channel saturation), the extra clock speed
provided by the turbo function when only four cores are running could increase the
performance over that of a simulation utilising all eight available cores.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
4

2.2.4 Hyper-threading

In a similar manner to the turbo boost function, modern Intel chips offer a capability called
hyper-threading in an attempt to further maximise performance. Hyper-threading allows
each core on the CPU to present itself to the operating system as two cores: one real and
one virtual. The operating system can then assign jobs to the virtual cores and these jobs
are run when the real core would otherwise be idle (such as during memory read/write)
theoretically maximising the utilisation of the CPU.

OpenFOAM is generally a memory intensive application, as opposed to strictly CPU
intensive. In cases where the CPU is not fully utilised, hyper-threading allows processes
assigned to virtual cores to run during the downtime and thus maximises utilisation.
However, during CFD computations, CPU utilisation rarely drops below 100% and
increasing the number of processes also increases the communication overhead. As a
result, it is likely that this increased overhead will outweigh any benefit gained from
maximising CPU utilisation through the use of virtual cores.

2.3 Software Factors

While changes to the specification and functionality of the hardware used to run CFD
simulations will undoubtedly improve the performance, once hardware has been
purchased it is often economically prohibitive to upgrade that hardware. To ensure that
the current hardware is being utilised most efficiently, there are several optimisations that
can be performed in the software, of which this report investigates the following.

2.3.1 Process Binding and Distribution

The method by which processes are allocated and bound to cores can have a significant
impact on the overall speed of a parallel computation. The proximity of processes in the
hardware architecture affects the speed and efficiency of inter-process communication.
The basic topology of the EMSMA HPC cluster can be seen in Figure 1.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
5

Figure 1 Hardware topology of the HPC cluster

Note: Since the Z820 workstations contain only one motherboard in each chassis, there is
no difference between a node and a board for the purpose of this investigation. As such,
boards will not be mentioned further in this report.

In most desktop computer systems, including those used for this investigation, process
assignment is managed by the operating system so as to balance the load on the system.
As part of this management, the operating system will move processes to different cores in
an attempt to improve overall system performance. Typically, CFD applications assign
discrete data to each parallel process that is stored in the memory attached to the core
running that process. If the operating system moves a process to a core that is not directly
attached to the same shared memory, the data relevant to that process needs to be
rewritten in the memory before the job can continue. This is likely to have a detrimental
effect on the performance of CFD simulations.

The need to rewrite data in memory and the subsequent degradation in performance can
be avoided by binding (or pinning) a process to a particular core. This prevents the
operating system from reassigning a process before the job is finished. OpenMPI (the
default message passing interface (MPI) library provided with OpenFOAM) provides
several options for process binding and distribution control, each of which can be invoked
when initiating the job using the ‘mpirun’ executable.

The performance of jobs that rely on inter-process communication is also dependent on the
distribution of processes across the cluster topology. Communication between cores on the

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
6

same CPU is faster than communication between sockets, which is faster than
communication between nodes.

A perfectly optimised parallel computation would distribute processes so as to maximise
communication between cores on the same CPU and minimise communication between
nodes. This level of fine grain optimisation is difficult (perhaps impossible) to achieve
given the complexity of most large CFD cases and the limitations in the software.
However, some control over the distribution can be attained and, as with process binding,
can be easily specified when initiating the job. The flags that can be used for process
binding and distribution are outlined in the mpirun man page [3] and are reproduced in
Table 1.

Table 1 Binding and Distribution options in OpenMPI

 Flag Description

Binding bind-to-none Do not bind processes. (Default)

 bind-to-core Bind processes to cores.

 bind-to-socket Bind processes to processor sockets.

Distribution bycore Associate processes with successive cores if used with one of
the -bind-to-* options. (Default)

 bysocket Associate processes with successive processor sockets if used
with one of the -bind-to-* options.

 bynode Launch processes one per node, cycling by node in a round-
robin fashion. This spreads processes evenly among nodes and
assigns ranks in a round-robin, "by node" manner.

2.3.2 Case Size and Decomposition

When a case is prepared for running in parallel, the domain is broken into pieces of
roughly the same size, each of which is assigned to a core. As the number of processes
increases, each piece becomes smaller and the computations can be completed faster. This
is the basic principle of parallel computing. As mentioned earlier, increasing
parallelisation in OpenFOAM also increases the amount of inter-process communication
required in order to keep the results consistent. As a result, the number of parallel
processes that can be run on any given case reaches a maximum where the reduction in
computation time per process is completely offset by the increase in communication time
and no further speedup can be achieved. For any given case of a specified mesh size, this
point of maximum efficiency is important to find to ensure that computational resources
are not being wasted.

The method by which the domain is decomposed affects the size and shape of each piece
and the order in which they are numbered, which in turn affects the relative locations
within the domain (inter-processor distance). As a result, the decomposition method
influences the time required for each process to complete its designated computations, the

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
7

amount of inter-process communication required and the topological distance between
processes that need to communicate in the hardware architecture. OpenFOAM provides
several built-in methods for decomposing cases to be run in parallel [4]. The description of
each method is reproduced in Table 2.

Table 2 Decomposition methods available in OpenFOAM

Method Description

Simple Simple geometric decomposition in which the domain is split into pieces by
direction, e.g. two pieces in the x-direction, one in the y-direction etc.

Hierarchical Hierarchical geometric decomposition which is the same as simple except the user
specifies the order in which the directional split is done, e.g. first in the y-direction,
then the x-direction etc.

Scotch Scotch decomposition which requires no geometric input from the user and
attempts to minimise the number of processor boundaries. The user can specify a
weighting for the decomposition between processors, through an optional
processorWeights keyword which can be useful on machines with differing
performance between processors.

Manual Manual decomposition, where the user directly specifies the allocation of each cell
to a particular processor.

Since the manual method requires specification of the binding for each cell, of which there
are between several hundred thousand and several million for most cases, the manual
method is not utilised at any point in this investigation.

The workstations in the HPC cluster all contain identical hardware, hence the processor
weighting function of the Scotch algorithm is also not utilised in this investigation.

2.3.3 Proprietary vs Open Source Compilers/Libraries

Given the open source nature of the OpenFOAM CFD package, the software is most often
compiled using an open source compiler (e.g. GCC) and utilises an open source MPI
library (e.g. OpenMPI) for process communication. These packages are readily available
and freely distributed with the OpenFOAM software and most Linux based operating
systems.

Intel produce a proprietary compiler (ICC) and MPI library (IMPI) that purportedly
provide performance increases due to optimisations specific to Intel based hardware. The
HPC advisory council demonstrate performance increases using the Intel MPI library
(compared to the Open MPI library) for clusters containing 8 nodes or more, with up to
44% performance increase for a 16 node cluster as seen in Figure 2.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
8

Figure 2 HPC advisory council advertised performance of Intel MPI vs OpenMPI [5]

2.4 CFD Test Cases

To investigate the effect on performance of each of the options outlined, many
computations were performed using various combinations of the options to determine the
optimum system configuration for running OpenFOAM on the given hardware. Two cases
were tested to demonstrate any differences that may exist between the performance
outcomes for different solvers. Different size meshes were used in each case to investigate
the scalability of parallelisation for different size cases. Except in the case where the
decomposition method was explicitly being investigated, the Scotch algorithm was used
for parallelisation of all cases. The two cases used are:

(i) Motorbike Tutorial
The first case used for testing was a tutorial case provided with the OpenFOAM
software that simulates the airflow around a 3D model of a motorbike and rider.
This case uses the simpleFoam solver and is provided with a mesh of
approximately 350,000 cells. (MB-350k)
A higher resolution mesh of this case was created by doubling the background
mesh density in 3 dimensions, which increased the total cell count of the completed
mesh to approximately 1.8 million cells. (MB-1.8M)

(ii) Proprietary DSTO case

The second case used for testing was a case that has been the subject of a recent
DSTO research project. This case uses the interFoam multiphase solver to simulate
the interface between water and air in a moving system. Three meshes were used
to run performance tests with sizes of 2.7 million, 5.8 million and 64 million cells.
(DSTO-2.7M, DSTO-5.8M, DSTO-64M)

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
9

2.5 Simulation details

Each computation was scripted to run using a variety of options in sequence. An example
of the commands used to initiate jobs when comparing the effect of core binding is given
here. For this test, a single node was used running 16 parallel processes.

mpirun –np 16 –bind‐to‐core simpleFoam –parallel > log (with core binding)
mpirun –np 16 simpleFoam –parallel > log (without core binding)

After each computation had completed a predetermined number of iterations (time steps),
the log files were examined in order to determine the performance of each configuration.
The overall computation time was extracted to give an indication of which configuration
completed the job the fastest. The total number of time steps completed was then used to
determine a performance rating (average time steps per hour). For the purpose of
visualising results, the performance rating for each test was normalised against the
performance rating for a single unit (either single core or single node depending on the
test) and plotted as a parallelisation speedup factor. When visualised in this manner, the
slope of the curve can be used to determine the parallelisation efficiency as a measure of
speedup per unit increase in hardware. It is important to recognise that even when
normalised, the performance rating (or speedup factor) is highly dependent on the
complexity of the case, the solver and the cell count of the mesh and so cannot be used to
accurately compare the results of different cases directly. It can, however, be used to
compare the performance of different system configurations on the same case, which is the
purpose of this investigation.

To give a good visualisation of the level of speedup achieved through parallelisation, most
tests were run multiple times using varying numbers of cores ranging from serial jobs run
on a single core, up to highly parallelised jobs run on the maximum number of available
cores. A manifest of computations completed can be found in Appendix A.

3. Results and Discussion

3.1 Process binding and distribution

3.1.1 Binding

It is expected that binding the processes will increase performance by preventing the
operating system from moving processes as a part of load balancing operations.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
10

Test Parameters
Case(s) Motorbike 1.8 million cells

Hardware 1 Node (1333 MHz RAM)

Processes Up to 16

MPI flags (no flags)
-bind-to-core
-bind-to-socket

The results shown in Figure 3 demonstrate that, as expected, the overall fastest
performance was achieved when the processes were bound and all cores were utilised. For
greater than twelve parallel processes, running with no binding flags was slower and in
some cases the simulation crashed. For less than twelve processes, binding the processes
actually caused the simulation to run slower; this is a result of the process distribution as is
explained further in section 3.1.2.

In theory, the difference between binding jobs to a socket and binding to specific cores
should be negligible, since the cores on each socket access the same shared memory. In
practice, the results show that while the two binding options produce very similar
performance outcomes, binding to a core was consistently a small margin faster than
binding to a socket. It is possible that the operating system uses a small amount of CPU
time monitoring the processes and potentially reassigning them within cores on the same
socket. When all processes are bound to specific cores, this resource usage in process
management would not need to take place.

0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

S
pe

ed
 U

p

Number of Parallel P rocesses

 Default (no flags)
 Bind-to-core
 Bind-to-socket

Figure 3 Comparison of core binding performance on a single workstation

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
11

3.1.2 Distribution

3.1.2.1 Single Node

The results shown in Figure 3 were obtained by running jobs using only the binding flags.
By default, Open MPI distributes jobs consecutively by core number. This means that
when sixteen parallel processes are run, the first eight are assigned to the first eight
numbered cores - which are all on the first socket - and then the last eight are assigned to
the second socket. When only eight processes are run, this default distribution assigns all
eight processes to the first socket, while the CPU in the second socket remains idle.
The stepped curves in Figure 3 occur due to this process distribution in combination with
the hardware architecture. While each Xeon CPU contains eight cores, they have only four
memory channels that allow the cores to read and write from the shared memory. As a
result, the expected parallelisation speedup is only fully realised up to four parallel
processes per socket. Beyond that limit, each process is required to share memory
bandwidth with at least one other process, which reduces the performance.

The job run without binding does not experience this effect due to the reallocation of
processes. After the first eight processes are assigned to the first socket, they are then
reassigned by the operating system in order to balance the load and so are able to access
the additional memory bandwidth on the second socket. As a result, running without
binding is faster than running with binding for up to twelve processes, despite the
slowdown attributed to process reallocation.

By using the process distribution flags, it is possible to force the system to allocate the
processes to each socket in turn such that for eight processes, four will be assigned to each
socket and every available memory channel will be utilised. Figure 4 shows the same job
run using the “bycore” (default) and “bysocket” distribution flags. Since this test was
conducted using a single workstation, the “bynode” distribution flag would have
produced the same result as the default option and was not tested.

Test Parameters
Case(s) Motorbike 1.8 million cells

Hardware 1 Node (1333 MHz RAM)

Processes Up to 16

MPI flags -bind-to-core -bycore
-bind-to-core -bysocket

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
12

0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

S
pe

ed
 U

p

Number of Parallel Processes

 bycore
 bysocket
 default

Figure 4 Comparison of process distribution options on a single workstation. The default (no flags)

result from Figure 3 is included for comparison.

The results in Figure 4 show that:

 As expected, increases in parallelisation need to be accompanied by available
memory bandwidth in order to produce significant speedup.

 Running sixteen parallel processes produces no realisable speedup over running
eight evenly distributed processes on this hardware.

 Running odd numbers of parallel processes is slower than running even
numbers when using the “bysocket” distribution option.

There is no immediately apparent reason why running with an odd number of processes
would be slower than an even number. It is possible that the decomposition algorithm is
not able to conveniently divide the domain into an odd number of pieces as easily as for an
even number. Such differences could lead to increases in inter-process communication or
unevenness in workload distribution that would cause a performance decrease, however
this is beyond the scope of this investigation. The effect of case decomposition on
performance is investigated in section 3.2.

Theoretically, the only difference between the “bycore” and “bysocket” distribution
methods when all sixteen cores are utilised is the amount of communication required
between processes on different sockets. It could be expected that processes numbered
closely would require greater communication since the decomposition algorithm would
number parts of the domain in sequence. This would in theory result in the “bycore”
option providing marginally faster results since neighbouring processes would generally
be located on the same socket. In practice, the “bysocket” flag consistently produced 1-2%
faster run times. Since the decomposed domain in all of the cases presented in this report
is 3-dimensional, it is reasonable to assume that the number of neighbouring processes

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
13

that are also numbered closely does not represent a significant portion of the overall inter-
process communication.

An interesting conclusion from the result in Figure 4 is that it is not better to utilise all of
the cores available in a node than to use only half. However, this scenario only occurs
when using 1333 MHz RAM. The majority of the workstations used in this investigation
contain faster 1600 MHz RAM, which partly overcomes the memory bandwidth issue.
Figure 5 shows the same test run on a machine with the faster RAM installed. While the
memory bandwidth bottleneck is still present, as evidenced by the change in the slope of
the data above eight processes, the results show that on these systems, the fastest
outcomes are achieved by utilising all sixteen available cores. The direct comparison
between RAM speed is discussed in section 3.5.

0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

6

7

8

S
pe

ed
 U

p

Number of Parallel Processes

 bycore
 bysocket

Figure 5 Comparison of process distribution options on a workstation with 1600 MHz RAM

3.1.2.2 Cluster

Once the level of parallelisation is expanded beyond the number of cores contained in a
single workstation, processes are required to communicate across a network connection.
This network connection can quickly become the most significant bottleneck in the system
and, as such, distributing the processes so as to minimise the amount of network
communication required can substantially impact the computational speed. The same test
used to compare distribution options in a single workstation was used to make the same
comparison in a larger networked cluster.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
14

Test Parameters
Case(s) Motorbike 1.8 million cells

Hardware 8 Nodes (1600 MHz RAM)
1 Gbps Ethernet Networking

Processes Up to 16 per node

MPI flags -bind-to-core –bycore
-bind-to-core –bysocket
-bind-to-core –bynode

0 20 40 60 80 100 120

0

5

10

15

20

25

30

S
p

ee
d

U
p

Number of Parallel Processes

 bycore
 bysocket
 bynode

3216 64 128

Figure 6 Comparison of process distribution options across a 128 core/8 node cluster

The results of this test, as seen in Figure 6, are ultimately the same as for a single
workstation. Distributing “bycore” or “bysocket” gives very similar performance with the
“bysocket” option providing slightly faster runtimes in most cases. The “bynode” option is
clearly faster for low numbers of parallel processes since running 1 or 2 processes on each
machine provides more memory bandwidth and faster CPU clock speeds (with turbo)
than running on a single workstation. The “bynode” option very quickly reaches a point
where network communication becomes the bottleneck in the system and adding further
parallel processes provides no increase in performance.

The scatter in the data at higher numbers of parallel processes are most likely due to a
similar effect as that which caused the performance difference between odd and even
numbers of processes in a single node (see section 3.1.2.1). Figure 6 clearly shows the best
performance being achieved at 64 and 128 processes, with diminished levels of
performance between. It is possible that at much higher levels of parallelisation, optimum
performance is only achieved when the number of processes is some even multiple of the
amount of hardware being utilised.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
15

3.2 Case decomposition method

The decomposition method used to parallelise the cases has a direct impact on the amount
of inter-process communication that is required and the distance across the cluster
topology that this communication has to travel. Several cases were parallelised using the
following decomposition options:

1) Simple decomposition split evenly in the x dimension. (Simple A)
2) Simple decomposition split once in the y dimension and evenly in the x dimension.

(Simple B)
3) Hierarchical decomposition split once in the y dimension and evenly in the x

dimension. Dimension hierarchy specified as x-y-z. (Hierarchical A)
4) Hierarchical decomposition split once in the y dimension and evenly in the x

dimension. Dimension hierarchy specified as z-y-x. (Hierarchical B)
5) Scotch decomposition as determined optimum by the Scotch algorithm.

The cases were decomposed both into 16 pieces for running on an individual workstation
and into 128 pieces for running on the entire HPC cluster.

Each decomposition method produced the same average cell count per piece for each case.
However the average number of processor faces (boundaries that require inter-process
communication) varied significantly, as can be seen in Table 3.

Table 3 Average number of processor faces using various decomposition methods

16 Pieces
 MB-350k MB-1.8M DSTO-2.7M DSTO-5.8M
Simple A 5147 13410 45050 47727
Simple B 3990 10907 24269 29592
Hierarchical A 4030 10949 24283 29641
Hierarchical B 4000 11140 24333 29622
Scotch 2969 10704 15675 37119

128 Pieces
 MB-350k MB-1.8M DSTO-2.7M DSTO-5.8M DSTO-64M
Simple A 4149 12539 42201 49954 201814
Simple B 2564 7123 23292 25846 104477
Hierarchical A 2572 7134 23299 25857 104477
Hierarchical B 2571 7185 23349 25889 104526
Scotch 981 3234 4933 10505 48829

For the Simple and Hierarchical methods, the cases were not split in the z dimension, as
this would create a split at the multiphase interface in the DSTO case. Splitting across the
multiphase interface is avoided so as to minimise the number of interface calculations that
occur across the processor boundaries.

The performance of each decomposition method was measured and normalised against
the best result for each case. The normalised data is presented in Figure 7 and Figure 8.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
16

Test Parameters

Case(s) Motorbike 350 thousand cells
Motorbike 1.8 million cells
DSTO Case 2.7 million cells
DSTO Case 5.8 million cells
DSTO Case 64 million cells (128 cores only)

Hardware 1 Node (1600 MHz RAM)
or
8 Nodes (1600 MHz RAM)
1 Gbps Ethernet Networking

Processes 16 per node

MPI flags -bind-to-core –bysocket

MB-350k MB-1.8M DSTO-2.7M DSTO-5.8M
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
a

lis
ed

 P
e

rf
or

m
a

nc
e

Cases

 Simple A
 Simple B
 Hierarchical A
 Hierarchical B
 Scotch

Figure 7 Performance comparison of decomposition methods on a single workstation

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
17

MB-350k MB- 1.8M DSTO-2.7M DSTO -5.8M DSTO-64M

0.0

0.2

0.4

0.6

0.8

1.0

 Simple A
 Simple A
 Hierarchical B
 Hierarchical B
 Scotch

 Cases

 N
or

m
al

is
ed

 P
er

fo
rm

an
ce

Figure 8 Performance comparison of decomposition methods on 128 core cluster

Since the Scotch decomposition method is optimised to reduce the number of processor
faces, and thus reduce the amount of communication required, it could be expected that
this would result in higher performance. With the exception of the 5.8 million cell case, the
Scotch decomposition cases ran quickly, although not always significantly faster than the
hierarchical method.

The variability in performance in these results, particularly for high numbers of parallel
processes, suggests that the optimum decomposition method is very dependent on the
case and that there may be other factors related to the mesh topology and/or solver that
influence the performance. This suggests that for any given case, a worthwhile amount of
performance improvement can be gained by testing a few different decomposition
methods to determine which provides the best layout for that particular case.

3.3 Case Size Optimisation

It is expected that for any given case, a point will be reached at which the performance
gains obtained by increasing the level of parallelisation will plateau. In order to determine
where this point lies for different sized cases with different solvers, each of the cases were
run at different parallelisation levels on the HPC cluster.

Figure 9 shows the performance of each case, run on 1-8 nodes of the cluster (16 – 128
cores). Since the larger cases show much lower performance as a measure of time steps per

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
18

hour, each result has been normalised as a speed-up factor over the performance on a
single node.

0 1 2 3 4 5 6 7 8

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p

e
e

d
 U

p

Number of Nodes
(1 Node = 16 Processes)

 Motorbike 350k
 Motorbike 1.8M
 DSTO Case 2.7M
 DSTO Case 5.8M
 DSTO Case 64M

Figure 9 Speedup of each case when run on 1-8 nodes of the HPC cluster

These results show a large amount of variation with extra nodes often decreasing the
performance of the computation. This fluctuation is reminiscent of the result seen in Figure
6, suggesting that optimum results are achieved through the parallelisation process when
the number of processes is some even multiple of the hardware. If the data from Figure 9 is
altered to only show results for numbers of nodes in powers of 2, the results show a trend
much closer to the expected increase in performance.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
19

0 1 2 3 4 5 6 7 8

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p

ee
d

U
p

Number of Nodes
(1 Node = 16 Processes)

 Motorbike 350k
 Motorbike 1.8M
 DSTO Case 2.7M
 DSTO Case 5.8M
 DSTO Case 64M

Figure 10 Speedup of each case when run on 1, 2, 4 or 8 nodes of the HPC cluster as per Figure 9

Figure 10 shows a clear performance improvement as the level of parallelisation is
increased, with the larger cases scaling in performance up to large numbers of cores. The
smaller cases show initial improvement, but then reach a point at which maximum
parallelisation speedup has been achieved. Beyond this point, the performance can be seen
to decrease with increasing parallelisation. This is a result of increased network
communication requirements offsetting the gains achieved in computation speed by
adding extra processing power.

Table 4 shows the cell count per core for each case with the best performance highlighted.
It is clear that the optimum cell count per core is highly dependent on the solver being
used, with the optimum point being approximately 11,000 cells for the simpleFoam solver
used in the motorbike tutorial cases, and approximately 43,000 cells for the interFoam
solver used for the DSTO cases. This solver dependency is visible in the results shown in
Figure 10. Since the optimum cell count per core is much lower for the motorbike case than
for the DSTO case, the 1.8 million cell motorbike case scales well up to 8 nodes, while the
2.7 million cell DSTO case reaches its maximum performance at 4 nodes. Due to the size
limitations of the cluster, it is not possible to test whether these estimates of optimum cell
count per core hold true for larger cases.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
20

Table 4 Average cells per process for up to 128 processes. Best performance highlighted.

Nodes MB-350k MB-1.8M DSTO-2.7M DSTO-5.8M DSTO-64M
1 21792 116481 173137 482104 3945990
2 10896 58241 86568 241052 1972995
3 7264 38827 57712 160701 1315330
4 5448 29120 43284 120526 986498
5 4358 23296 34627 96421 789198
6 3632 19414 28856 80351 657665
7 3113 16640 24734 68872 563713
8 2724 14560 21642 60263 493249

Table 5 shows the parallelisation efficiency for each doubling of the cluster size for each
case. The parallelisation efficiency is determined as the slope of the line between the data
points in Figure 10.

Table 5 Parallelisation efficiency with increases in cluster size from 1 node to 8 nodes

 Parallelisation Efficiency

Increase
in Nodes

Motorbike
350k

Motorbike
1.8M

DSTO
2.7M

DSTO
5.8M

DSTO
64M

1 ‐ 2 22% 85% 34% 81% 78%

2 ‐ 4 ‐6% 51% 14% 34% 50%

4 ‐ 8 ‐2% 14% ‐5% 9% 26%

While the larger cases are able to scale more efficiently than the smaller cases, all of the
cases showed significant decreases in parallelisation efficiency as the number of nodes
used was increased. This suggests that where possible, the smallest number of nodes
should be used to run cases so as to maximise efficiency. This is practical when multiple
cases are available to be run simultaneously and the cases are small enough that large
parallelisation is required in order to complete the simulation in a reasonable timeframe.
When only a single case is being run at a given time, the extent of the parallelisation
should be tailored to the size of the case. For a large case, the fastest runtimes will
generally be achieved by using the maximum available number of cores.

3.4 Proprietary Compiler and MPI Library

3.4.1 Intel MPI process binding and distribution

The Intel MPI library provides a different set of optimisation flags to those used by Open
MPI. In order to be sure that the process distribution is optimal, a test was run comparing
the available optimisation flags, similar to the test performed for Open MPI. A total of 19
different binding/distribution options were evaluated:

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
21

Test Parameters
Case(s) Motorbike 1.8 million cells

Hardware 1 Node (1600 MHz RAM)

Processes 16 per node
MPI flags

Intel MPI:
Default (no flags)
-binding pin=0
-binding pin=1
-binding cell=unit
-binding cell=core
-binding “cell=unit map=spread”
-binding “cell=unit map=scatter”
-binding “cell=unit map=bunch”
-binding “cell=core map=spread”
-binding “cell=core map=scatter”
-binding “cell=core map=bunch”
-binding map=spread
-binding map=scatter
-binding map=bunch
-binding domain=cell
-binding domain=core
-binding domain=socket
-binding order=compact
-binding order=linear

The results in Figure 11 show that while there are many more distribution control options
in the Intel MPI, with each providing different levels of performance as the parallelisation
is increased, only the option that specifies to turn binding off (red line) causes significant
reduction in performance when all cores are being utilised. For every other option, binding
on is the default for the Intel MPI. The results also show that while some of the binding
and distribution options for the Intel MPI library are sensitive to odd and even numbers of
processes, others are less sensitive and some show a performance improvement with odd
numbers rather than even. This suggests that the preference for even (or odd) numbers of
processes is not a result of the case decomposition (which is identical for all of these
options) but it is instead related to how the job distribution is handled by the MPI library.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
22

0 2 4 6 8 10 12 14 16

0

2

4

6

8

S
pe

ed
 U

p

Number of processes

Figure 11 Performance of 19 Intel MPI binding flags in a single workstation. (Legend omitted)

The marked data points show the best result, achieved using the flag “cell=unit
map=scatter”.

On a single workstation the best performance was obtained with the “cell=unit
map=scatter” binding flag, represented by the marked data points in Figure 11. however
many of the options tested produced very similar performance as can be seen by the close
proximity of many of the lines in Figure 11. To test the optimal binding flags to be used on
the whole cluster, a subset of the best performing options from the single-node test was
run on all the available test cases.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
23

Test Parameters
Case(s) Motorbike 350 thousand cells

Motorbike 1.8 million cells
DSTO Case 2.7 million cells
DSTO Case 5.8 million cells
DSTO Case 64 million cells

Hardware 8 Nodes (1600 MHz RAM)
1 Gbps Ethernet Networking

Processes 16 per node

MPI flags

Intel MPI:
-binding “cell=unit map=spread”
-binding “cell=unit map=scatter”
-binding “cell=unit map=bunch”
-binding “cell=core map=spread”
-binding “cell=core map=scatter”
-binding “cell=core map=bunch”

MB-350k MB-1.8M DSTO-2.7M DSTO-5.8M DSTO-64M
0.90

0.92

0.94

0.96

0.98

1.00

N
o

rm
al

is
e

d
P

e
rf

or
m

a
nc

e

Cases

 cell=core map=spread
 cell=core map=scatter
 cell=core map=bunch
 cell=unit map=spread
 cell=unit map=scatter
 cell=unit map=bunch

Figure 12 Normalised performance of Intel MPI binding flags run on 128 cores for all cases

Figure 12 shows that across the various test cases, there is no one binding flag that always
produces the best performance. Across the results, each of the flags used in this test
produced a performance measure within 2-4% of the best result for each case. It is then
reasonable to expect that any of these flags could be used to achieve good performance.
However, the results also show that across the cases, the “cell=unit map=bunch” option

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
24

produced the most consistent performance for all cases. As a result, the “cell=unit
map=bunch” flag was used for all subsequent computations using the Intel MPI library.

3.4.2 Intel vs Open Source Performance

The Intel compiler and Intel MPI library can be used together, or in any combination, with
the open source variations. As such there are four possible combinations of Intel/open
source that can be used to run OpenFOAM.

 Intel compiler and Intel MPI library (ICC-IMPI)
 GCC compiler and Intel MPI library (GCC-IMPI)
 Intel compiler and Open MPI library (ICC-OMPI)
 GCC compiler and Open MPI library (GCC-OMPI)

Each combination was used to run the same five cases as the case size optimisation test.
The results in Figure 13 show the performance of the 1.8 million cell motorbike case. The
results of all other cases were comparable.

Test Parameters
Case(s) Motorbike 350 thousand cells

Motorbike 1.8 million cells
DSTO Case 2.7 million cells
DSTO Case 5.8 million cells
DSTO Case 64 million cells (128 cores only)

Hardware 8 Nodes (1600 MHz RAM)
1 Gbps Ethernet Networking

Processes 16 per node

MPI flags Open MPI:
-bind-to-core –bysocket
Intel MPI:
-binding “cell=unit;map=bunch”

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
25

 1 2 4 8

0

2000

4000

6000

8000

10000

12000

14000

T
im

e
 S

te
ps

 p
e

r
H

ou
r

Number of Nodes

 GCC-OMPI
 ICC-OMPI
 GCC-IMPI
 ICC-IMPI

Figure 13 Performance of Open Source vs Intel compiler and MPI Library.

It is possible that the Intel compiler and MPI library may provide some advantages on
different hardware or on larger scale clusters, however for the hardware currently being
utilised for this study it is clear that maximum performance is achieved when using both
the open source options (GCC-OMPI).

3.5 RAM speed

Figure 4 and Figure 5 show the results of the same simulation run on hardware configured
with RAM at different clock speeds. It was shown that the memory channel bandwidth
was a limiting factor in the speed of the simulation, and that faster memory is able to
utilise this bandwidth more effectively to continue realising parallelisation gains once the
number of processes on a socket exceeds the number of memory channels. Figure 14
shows an overlay of the results directly comparing the simulation performance with RAM
speed. It is clear that increasing the speed of the RAM provides significant speed
improvement in the calculation, especially at higher levels of parallelisation. For 8 parallel
processes, the 1600 MHz RAM allows 42% faster simulations than the 1333 MHz RAM,
while at 16 parallel processes the difference is 67%. This extra 25% performance increase is
enabled by the higher memory bandwidth of the faster RAM.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
26

Test Parameters
Case(s) Motorbike 1.8 million cells

Hardware 1 Node (512 GB - 1333 MHz RAM)
1 Node (64 GB - 1600 MHz RAM)

Processes Up to 16

MPI flags -bind-to-core -bysocket

0 2 4 6 8 10 12 14 16

0

2000

4000

T
im

e
 S

te
ps

 P
e

r
H

o
ur

Number of Parallel Processes

 1600MHz
 1333MHz

Figure 14 Comparison of performance with RAM speed

In the case where a job is being run on a single workstation, knowing that faster RAM
produces faster simulations does not provide a significant advantage beyond being able to
make informed purchasing decisions when procuring more hardware.

For large scale parallelisation across multiple workstations this information is very
important. CFD calculations are run as a series of iterations/time steps each of which must
be fully completed before the next can begin. In large scale parallelisation, having one
node running at a slower speed would result in the faster nodes completing their
calculations and then having to wait for the slower node to finish before proceeding to the
next calculation. This ultimately means that a large cluster will only run at the speed of its
slowest component. It is important then, to be aware of any differences between individual
pieces of hardware in the cluster and ensure that where possible, only like hardware is
used to run large scale parallel computations. OpenFOAM provides load balancing tools
that can be used to ensure that mixed hardware is fully utilised, but the use and
effectiveness of these tools is beyond the scope of this investigation.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
27

3.6 Turbo Boost

Since the turbo function of the Xeon CPUs is nominally activated only when some of the
cores on the CPU are idle, it is expected that the increased clock speed achieved by this
function will only improve the simulation speed at low levels of parallelisation and so
would not provide any advantage for the normal use case where all available cores are
being utilised. Figure 15 shows the comparison between a job run with the turbo function
enabled and disabled. Figure 16 shows the same results presented as the percentage
improvement in performance with turbo enabled.

Test Parameters
Case(s) Motorbike 1.8 million cells

Hardware 1 Node (1600 MHz RAM)
- Turbo Enabled
- Turbo Disabled

Processes Up to 16

MPI flags -bind-to-core -bysocket

0 2 4 6 8 10 12 14 16

0

2000

4000

T
im

e
S

te
ps

 P
e

r
H

o
ur

Number of Parallel Processes

 Turbo Enabled
 Turbo Disabled

Figure 15 Comparison of performance with and without Intel Turbo Boost functionality

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
28

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

P
er

fo
rm

an
ce

 In
cr

ea
se

 (
%

)

Number of Processes

Figure 16 Percentage performance increase from enabling the turbo function on a single node

As expected, the greatest improvement from the turbo function was realised at low levels
of parallelisation and so is not useful for practical purposes. However, the results showed
that even at full utilisation, a small performance improvement (~2%) was seen when the
function was enabled. Since there is no penalty for using the turbo boost, it is clearly best
to always enable the capability, even when the expected improvements are small.

3.7 Hyper-threading

Unlike the turbo boost function, which can be utilised with no penalty, taking advantage
of the hyper-threading capability of the Xeon CPUs requires increasing the level of
parallelisation, which is known to increase overhead in CFD applications. Since the
increase in parallelisation is not accompanied by an increase in memory bandwidth, it
could reasonably be expected that little or no improvement would be achieved by
assigning multiple processes to each physical core.

When attempting to analyse the performance of a parallel simulation run with 16
processes on one node, compared with 32 processes on the same node using
hyper-threading, it was found that the system would not bind processes to a virtual core.
If a case was run on greater than 16 cores with binding enabled it would fail to start.
Figure 17 shows results of testing up to 32 processes, with hyper-threading enabled and
binding disabled as well as the results up to 16 processes with binding enabled and
hyper-threading both enabled and disabled.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
29

Test Parameters
Case(s) Motorbike 1.8 million cells

Hardware 1 Node (1600 MHz RAM)
- Hyper-threading enabled, binding enabled
- Hyper-threading enabled, binding disabled
- Hyper-threading disabled, binding enabled

Processes Up to 16 with binding enabled
Up to 32 with hyper-threading enabled, binding disabled

MPI flags -bind-to-core –bysocket (binding enabled)
-bysocket (binding disabled)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

2000

4000

T
im

e
 S

te
p

s
P

e
r

H
ou

r

Number of Parallel Processes

 Binding Enabled
 Binding Disabled
 Hyperthreading Disabled

Figure 17 Comparison of standard parallelisation against 2x processes using hyper-threading

While the increase in CPU utilisation provided by the hyper-threading function does seem
to improve performance of the system, it is apparent that the best performance achieved
from using all the additional virtual cores (with binding disabled), is less than that of using
only the real cores with binding. The results for up to 16 processes with binding enabled
were identical, regardless of whether hyper-threading was enabled or disabled. This is to
be expected, since running on 16 or less cores means that the virtual cores provided by the
hyper-threading function are not utilised. As a result, it is unimportant whether
hyper-threading is enabled or disabled for the speed of the simulation. In the interest of
system robustness, it is worth disabling the function as this prevents the user from

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
30

mistakenly attempting to bind processes to virtual cores which would result in the
simulation failing to run.

4. Conclusion

For optimum use of the EMSMA group’s Intel Xeon based HPC cluster, the results of this
investigation have shown that it is best to use a version of OpenFOAM that has been
compiled with the open source compiler (GCC) and MPI library (Open MPI). Cases should
be decomposed to run in parallel using either the hierarchical or Scotch decomposition
methods depending on the case and level of parallelisation, then run using core binding
and “by socket” process distribution on 16 processes per node and a maximum number of
nodes dependent on the size of the case and the solver being utilised. Hardware
containing the fastest available RAM should be used as a preference and clustering
hardware with different performance levels should be avoided. Where possible, multiple
cases should be run simultaneously using fewer nodes per case.

5. Future Work

The results comparing decomposition methods suggest that the optimum method varies
on a case by case basis. Further investigation into which methods affect the performance in
what way would provide a greater understanding of how the differences between the
methods affects the performance and so which methods would likely be best to use in any
given scenario.

The greatest bottleneck encountered in attempting to increase the computation speed
through parallelisation is the limitation in the speed of the networking equipment.
Upgrading the network fabric to a faster technology (such as 10 Gbps Ethernet or
Infiniband) would allow the realisation of much higher speed-up using the number of
CPUs currently available, as well as allowing further upscaling of the size of the cluster. At
the time of writing, Infiniband hardware was being procured to allow for fast networking.
After installing this hardware, the case size optimisation done in this report will need to be
repeated in order to determine the optimum cluster size for any particular case. It is also
possible that faster networking hardware and/or a larger cluster size may allow the
proprietary Intel compiler and MPI libraries to realise some speed up over the open source
alternatives.

In the case where upgrades to the cluster introduced a mismatch in hardware capability, it
would be necessary to perform investigations into the load balancing tools available with
the OpenFOAM package in order to ensure that large cases can be run on all the available
hardware optimally.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
31

6. References

1. OpenFOAM - The Open Source Computational Fluid Dynamics (CFD) Toolbox. 2014

[Accessed on 09/04/2014]; Available from: www.openfoam.com.
2. Colwell, B., The Zen of Overclocking. Computer, 2004. 37(3): p. 9-12.
3. mpirun(1) man page (version 1.5.5). 2012 [Accessed on 13/3/2014]; Available from:

http://www.open-mpi.org/doc/v1.5/man1/mpirun.1.php.
4. Running applications in parallel. 2014 [Accessed on 13/3/2014]; Available from:

http://www.openfoam.org/docs/user/running-applications-parallel.php.
5. OpenFOAM Performance Benchmark and Profiling. 2013 [Accessed on 13/3/2014];

Available from:
http://www.hpcadvisorycouncil.com/pdf/OpenFOAM_Analysis_and_Profiling_I
ntel_2680_FCA.pdf.

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
32

This page is intentionally blank

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
33

Appendix A: Table of completed simulations

Hardware Compiler MPI
decomposition
method Cases Processes MPI flags

1 node, 1333 MHz RAM GNU Open Scotch
Motorbike
350k 1-16 -bind-to-core

1 node, 1600 MHz RAM
Motorbike
1.8M (none)

 DSTO 2.7M -bind-to-core -bysocket

 -bysocket

1 node, 1333 MHz RAM (turbo disabled) GNU Open Scotch
Motorbike
350k 1-16 -bind-to-core

1 node, 1600 MHz RAM (turbo disabled)
Motorbike
1.8M -bind-to-core -bysocket

1 node, 1333 MHz RAM (hyperthreading
enabled) GNU Open Scotch

Motorbike
1.8M 1-32 -bind-to-core -bysocket

1 node, 1600 MHz RAM (hyperthreading
enabled) -bind-to-core

1 node, 1333 MHz RAM GNU Open Scotch
Motorbike
350k 1-16 -bind-to-core

1 node, 1600 MHz RAM
Motorbike
1.8M -bind-to-core -bysocket

 -bind-to-socket

 -bind-to-socket -bysocket

 (none)

1 node, 1333 MHz RAM GNU Open Scotch
Motorbike
350k 1-16 -bind-to-core -bysocket

 -bind-to-core -npersocket 4

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
34

4 nodes, 1600 MHz RAM GNU Open Scotch
Motorbike
1.8M 1-32 -bind-to-core -bysocket -npersocket 4

 -bind-to-core -bynode -npersocket 4

8 nodes, 1600 MHz RAM GNU Open Scotch
Motorbike
1.8M 1-128 -bind-to-core -bycore

 DSTO 2.7M -bind-to-core -bysocket

 -bind-to-core -bynode

 -bind-to-core -bynode -bysocket

8 nodes, 1600 MHz RAM GNU Open Scotch DSTO 64M
8 per node, 1-8
nodes -bind-to-core -bysocket

8 nodes, 1600 MHz RAM GNU Open Scotch
Motorbike
350k

16 per node, 1-8
nodes -bind-to-core -bysocket

Motorbike
1.8M

 DSTO 2.7M

 DSTO 5.8M

 DSTO 64M

4 nodes, 1600 MHz RAM GNU Open Scotch DSTO 2.7M 1-64 -bind-to-core -bysocket

4 nodes, 1600 MHz RAM GNU Open Scotch
Motorbike
1.8M 1-64

-bind-to-core -bysocket (hostfile specifies 1 core per
node)

-bind-to-core -bysocket (hostfile specifies 8 cores per
node)

-bind-to-core -bysocket (hostfile specifies 16 cores
per node)

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
35

1 node, 1333 MHz RAM Intel Intel Scotch
Motorbike
350k 1-16 (none)

1 node, 1600 MHz RAM
Motorbike
1.8M -binding pin=0

 DSTO 2.7M -binding pin=1

 -binding cell=unit

 -binding cell=core

 -binding "cell=unit;map=spread"

 -binding "cell=unit;map=scatter"

 -binding "cell=unit;map=bunch"

 -binding "cell=core;map=spread"

 -binding "cell=core;map=scatter"

 -binding "cell=core;map=bunch"

 -binding map=spread

 -binding map=scatter

 -binding map=bunch

 -binding domain=cell

 -binding domain=core

 -binding domain=socket

 -binding order=compact

 -binding order=linear

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
36

4 nodes, 1600 MHz RAM Intel Intel Scotch DSTO 2.7M 1-64 -binding "cell=unit;map=spread"

 -binding "cell=unit;map=scatter"

 -binding "cell=unit;map=bunch"

 -binding "cell=core;map=spread"

 -binding "cell=core;map=scatter"

 -binding "cell=core;map=bunch"

 -binding domain=socket

 -binding domain=cell

 -binding domain=core

 -binding order=compact

 -binding order=scatter

 -binding "domain=socket;order=scatter"

 -binding "domain=cell;order=scatter"

 -binding "cell=core;map=bunch;domain=core"

-binding
"cell=core;map=bunch;domain=core;order=compact"

-binding
"cell=core;map=bunch;domain=core;order=scatter"

 -binding "cell=core;map=bunch;domain=node"

-binding
"cell=core;map=bunch;domain=node;order=compact"

-binding
"cell=core;map=bunch;domain=node;order=scatter"

8 nodes, 1600 MHz RAM GNU Open Scotch
Motorbike
350k

16 per node, 1-8
nodes -bind-to-core -bysocket

 Intel Intel
Motorbike
1.8M -binding "cell=core;map=spread"

 DSTO 2.7M -binding "cell=core;map=scatter"

 DSTO 5.8M -binding "cell=core;map=bunch"

 DSTO 64M -binding "cell=unit;map=spread"

 -binding "cell=unit;map=scatter"

 -binding "cell=unit;map=bunch"

UNCLASSIFIED
DSTO-TR-2987

UNCLASSIFIED
37

1 node, 1600 MHz RAM GNU Open Simple A
Motorbike
350k 16 -bind-to-core -bysocket

8 nodes, 1600 MHz RAM Simple B
Motorbike
1.8M 128

 Hierarchical A DSTO 2.7M

 Hierarchical B DSTO 5.8M

 Scotch DSTO 64M

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. DLM/CAVEAT (OF DOCUMENT)

2. TITLE

Optimising the Parallelisation of OpenFOAM Simulations

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document (U)
 Title (U)
 Abstract (U)

4. AUTHOR(S)

Shannon Keough

5. CORPORATE AUTHOR

DSTO Defence Science and Technology Organisation
506 Lorimer St
Fishermans Bend Victoria 3207 Australia

6a. DSTO NUMBER
DSTO-TR-2987

6b. AR NUMBER
AR-015-993

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
June 2014

8. FILE NUMBER
2014/1103169/1

9. TASK NUMBER
CDG 07/298

10. TASK SPONSOR
Head Future Submarine
Program

11. NO. OF PAGES
35

12. NO. OF REFERENCES
5

13. DSTO Publications Repository

http://dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, Maritime Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DSTO RESEARCH LIBRARY THESAURUS

CFD, OpenFOAM, parallel processing, Computational fluid dynamics

19. ABSTRACT
The OpenFOAM computational fluid dynamics toolbox allows parallel computation of fluid dynamics simulations on a
theoretically unlimited number of processor cores. The software utilises a message passing interface (MPI) library in order
to facilitate communication between parallel processes as the computation is completed. In order to maximise the parallel
efficiency of the computation, the way in which the MPI application distributes the problem among the processors needs
to be optimised. This report examines the performance of a given high performance computing cluster with several
OpenFOAM cases, running using a combination of MPI libraries and corresponding MPI flags. The effect of hardware
variations on the speed of the computation is also briefly investigated. The results show a noticeable improvement in
simulation time when certain flags are given to the MPI library in order to control the binding and distribution of
processes amongst the cluster.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Author
	Contents
	Abbreviations
	1. Introduction
	2. Methodology
	2.1 High Performance Cluster
	2.2 Hardware factors
	2.3 Software Factors
	2.4 CFD Test Cases
	2.5 Simulation details

	3. Results and Discussion
	3.1 Process binding and distribution
	3.2 Case decomposition method
	3.3 Case Size Optimisation
	3.4 Proprietary Compiler and MPI Library
	3.5 RAM speed
	3.6 Turbo Boost
	3.7 Hyper-threading

	4. Conclusion
	5. Future Work
	6. References
	Appendix A: Table of completed simulations
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

